Postural Transition Detection
Postural Transition Detection (Pham)
This algorithm aims to detect postural transitions (e.g., sit to stand or stand to sit movements) using accelerometer and gyroscope data collected from a lower back inertial measurement unit (IMU) sensor based on [1].
The algorithm is designed to be robust in detecting postural transitions using inertial sensor data and provides detailed information about these transitions. It starts by loading the accelerometer and gyro data, which includes three columns corresponding to the acceleration and gyro signals across the x, y, and z axes, along with the sampling frequency of the data. It first checks the validity of the input data. Then, it calculates the sampling period, selects accelerometer and gyro data. Then, it uses a Versatile Quaternion-based Filter (VQF) to estimate the orientation of the IMU [2]. This helps in correcting the orientation of accelerometer and gyroscope data. Tilt angle estimation is performed using gyro data in lateral or anteroposterior direction which represent movements or rotations in the mediolateral direction. The tilt angle is decomposed using wavelet transformation to identify stationary periods. Stationary periods are detected using accelerometer variance and gyro variance. Then, peaks in the wavelet-transformed tilt signal are detected as potential postural transition events.
If there's enough stationary data, further processing is done to estimate the orientation using quaternions and to identify the beginning and end of postural transitions using gyro data. Otherwise, if there's insufficient stationary data, direction changes in gyro data are used to infer postural transitions. Finally, the detected postural transitions along with their characteristics (onset, duration, etc.) are stored in a pandas DataFrame (postural_transitions_ attribute).
In addition, spatial-temporal parameters are calculated using detected postural transitions and their characteristics by the spatio_temporal_parameters method. As a return, the postural transition id along with its spatial-temporal parameters including type of postural transition (sit to stand or stand to sit), angle of postural transition, maximum flexion velocity, and maximum extension velocity are stored in a pandas DataFrame (parameters_ attribute).
If requested (plot_results set to True), it generates plots of the accelerometer and gyroscope data along with the detected postural transitions.
Methods:
Name | Description |
---|---|
detect |
Detects sit to stand and stand to sit using accelerometer and gyro signals. |
spatio_temporal_parameters |
Extracts spatio-temporal parameters of the detected turns. |
Examples:
>>> pham = PhamPosturalTransitionDetection()
>>> pham.detect(
accel_data=accel_data,
gyro_data=gyro_data,
sampling_freq_Hz=200.0,
tracking_system="imu",
tracked_point="LowerBack",
plot_results=False
)
>>> print(pham.postural_transitions_)
onset duration event_type tracking_systems tracked_points
0 17.895 1.8 postural transition imu LowerBack
1 54.655 1.9 postural transition imu LowerBack
>>> pham.spatio_temporal_parameters()
>>> print(pham.parameters_)
type of postural transition angle of postural transition maximum flexion velocity maximum extension velocity
0 sit to stand 53.26 79 8
1 stand to sit 47.12 91 120
References
[1] Pham et al. (2018). Validation of a Lower Back "Wearable"-Based Sit-to-Stand and Stand-to-Sit Algorithm... https://doi.org/10.3389/fneur.2018.00652 [2] D. Laidig and T. Seel. “VQF: Highly Accurate IMU Orientation Estimation with Bias Estimation ... https://doi.org/10.1016/j.inffus.2022.10.014
Source code in kielmat/modules/ptd/_pham.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
|
__init__(cutoff_freq_hz=5.0, thr_accel_var=0.05, thr_gyro_var=0.1, min_postural_transition_angle_deg=15.0)
Initializes the PhamPosturalTransitionDetection instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cutoff_freq_hz
|
float
|
Cutoff frequency for low-pass Butterworth filer. Default is 5.0. |
5.0
|
thr_accel_var
|
float
|
Threshold value for identifying periods where the acceleartion variance is low. Default is 0.5. |
0.05
|
thr_gyro_var
|
float
|
Threshold value for identifying periods where the gyro variance is low. Default is 2e-4. |
0.1
|
min_postural_transition_angle_deg
|
float
|
Minimum angle which is considered as postural transition in degrees. Default is 15.0. |
15.0
|
Source code in kielmat/modules/ptd/_pham.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
|
detect(accel_data, gyro_data, sampling_freq_Hz, dt_data=None, tracking_system=None, tracked_point=None, plot_results=False)
Detects postural transitions based on the input accelerometer and gyro data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
accel_data
|
DataFrame
|
Input accelerometer data (N, 3) for x, y, and z axes. |
required |
gyro_data
|
DataFrame
|
Input gyro data (N, 3) for x, y, and z axes. |
required |
sampling_freq_Hz
|
float
|
Sampling frequency of the input data. |
required |
dt_data
|
Series
|
Original datetime in the input data. If original datetime is provided, the output onset will be based on that. |
None
|
tracking_system
|
str
|
Tracking systems. |
None
|
tracked_point
|
str
|
Tracked points on the body. |
None
|
plot_results
|
bool
|
If True, generates a plot. Default is False. |
False
|
Returns:
Type | Description |
---|---|
DataFrame
|
The postural transition information is stored in the 'postural_transitions_' attribute, which is a pandas DataFrame in BIDS format with the following columns:
|
Source code in kielmat/modules/ptd/_pham.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
|
spatio_temporal_parameters()
Extracts spatio-temporal parameters of the detected postural transitions.
Returns:
Type | Description |
---|---|
DataFrame
|
The spatio-temporal parameter information is stored in the 'spatio_temporal_parameters' attribute, which is a pandas DataFrame as:
|
Source code in kielmat/modules/ptd/_pham.py
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
|