Turn Detection
Turn Detection (Pham)
This algorithm aims to detect turns using accelerometer and gyroscope data collected from a lower back inertial measurement unit (IMU) sensor.
The core of the algorithm lies in the detect method, where turns are identified using accelerometer and gyroscope data. The method first processes the gyro data, converting it to rad/s if needed and computing the variance to identify periods of low variance, which may indicate bias. It then calculates the gyro bias and subtracts it from the original gyro signal to remove any biases. Next, the yaw angle is computed by integrating the vertical component of the gyro data, and zero-crossings indices are found to detect turns. Then, turns are identified based on significant changes in the yaw angle.
The algorithm also accounts for hesitations, which are brief pauses or fluctuations in the signal that may occur within a turn. Hesitations are marked based on specific conditions related to the magnitude and continuity of the yaw angle changes.
Then, the detected turns are characterized by their onset and duration. Turns with angles equal to or greater than 90 degrees and durations between 0.5 and 10 seconds are selected for further analysis. Finally, the detected turns along with their characteristics (onset, duration, etc.) are stored in a pandas DataFrame (turns_ attribute).
In addition, spatial-temporal parameters are calculated using detected turns and their characteristics by the spatio_temporal_parameters method. As a return, the turn id along with its spatial-temporal parameters including direction (left or right), angle of turn and peak angular velocity are stored in a pandas DataFrame (parameters_ attribute).
Optionally, if plot_results is set to True, the algorithm generates a plot visualizing the accelerometer and gyroscope data alongside the detected turns. This visualization aids in the qualitative assessment of the algorithm's performance and provides insights into the dynamics of the detected turns.
Methods:
Name | Description |
---|---|
detect |
Detects turns using accelerometer and gyro signals. Returns: PhamTurnDetection: an instance of the class with the detected turns stored in the 'turns_' attribute. |
spatio_temporal_parameters |
Extracts spatio-temporal parameters of the detected turns. |
Examples:
>>> pham = PhamTurnDetection()
>>> pham.detect(
accel_data=accel_data,
gyro_data=gyro_data,
gyro_vertical="pelvis_GYRO_x",
sampling_freq_Hz=200.0,
tracking_system="imu",
tracked_point="LowerBack",
plot_results=False
)
>>> print(pham.turns_)
onset duration event_type tracking_systems tracked_points
0 4.04 3.26 turn imu LowerBack
1 9.44 3.35 turn imu LowerBack
>>> pham.spatio_temporal_parameters()
>>> print(pham.parameters_)
direction_of_turn angle_of_turn peak_angular_velocity
0 left -197.55 159.45
1 right 199.69 144.67
References
[1] Pham et al. (2017). Algorithm for Turning Detection and Analysis Validated under Home-Like Conditions... https://doi.org/10.3389/fneur.2017.00135
Source code in kielmat/modules/td/_pham.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
|
__init__(thr_gyro_var=0.0002, min_turn_duration_s=0.5, max_turn_duration_s=10, min_turn_angle_deg=90)
Initializes the PhamTurnDetection instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
thr_gyro_var
|
float
|
Threshold value for identifying periods where the variance is low. Default is 2e-4. |
0.0002
|
min_turn_duration_s
|
float
|
Minimum duration of a turn in seconds. Default is 0.5. |
0.5
|
max_turn_duration_s
|
float
|
Maximum duration of a turn in seconds. Default is 10. |
10
|
min_turn_angle_deg
|
float
|
Minimum angle of a turn in degrees. Default is 90. |
90
|
Source code in kielmat/modules/td/_pham.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
|
detect(accel_data, gyro_data, gyro_vertical, sampling_freq_Hz, dt_data=None, tracking_system=None, tracked_point=None, plot_results=False)
Detects truns based on the input accelerometer and gyro data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
accel_data
|
DataFrame
|
Input accelerometer data (N, 3) for x, y, and z axes. |
required |
gyro_data
|
DataFrame
|
Input gyro data (N, 3) for x, y, and z axes. |
required |
gyro_vertical
|
str
|
The column name that corresponds to the vertical component gyro. |
required |
sampling_freq_Hz
|
float
|
Sampling frequency of the input data in Hz. |
required |
dt_data
|
Series
|
Original datetime in the input data. If original datetime is provided, the output onset will be based on that. |
None
|
tracking_system
|
str
|
Tracking systems. |
None
|
tracked_point
|
str
|
Tracked points on the body. |
None
|
plot_results
|
bool
|
If True, generates a plot. Default is False. |
False
|
Returns:
Type | Description |
---|---|
PhamTurnDetection
|
The turns information is stored in the 'turns_' attribute, |
PhamTurnDetection
|
which is a pandas DataFrame in BIDS format with the following information: - onset: Start time of the turn in second. - duration: Duration of the turn in second. - event_type: Type of the event (turn). - tracking_systems: Name of the tracking systems. - tracked_points: Name of the tracked points on the body. |
Source code in kielmat/modules/td/_pham.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
|
spatio_temporal_parameters()
Extracts spatio-temporal parameters of the detected turns.
Returns:
Type | Description |
---|---|
None
|
The spatio-temporal parameter information is stored in the 'spatio_temporal_parameters' |
None
|
attribute, which is a pandas DataFrame as: - direction_of_turn: Direction of turn which is either "left" or "right". - angle_of_turn: Angle of the turn in degrees. - peak_angular_velocity: Peak angular velocity during turn in deg/s. |
Source code in kielmat/modules/td/_pham.py
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
|