Skip to content

Preprocessing functions

This part from the utilities documentation focuses on comon preprocessing steps.

apply_continuous_wavelet_transform(data, scales=10, desired_scale=10, wavelet='gaus2', sampling_frequency=40)

Apply continuous wavelet transform to the input signal.

Parameters:

Name Type Description Default
data ndarray

Input signal.

required
scales int

Number of scales for the wavelet transform. Default is 10.

10
desired_scale int

Desired scale to use in calculations. Default is 10.

10
wavelet str

Type of wavelet to use. Default is 'gaus2'.

'gaus2'
sampling_frequency float

Sampling frequency of the signal. Default is 40.

40

Returns:

Name Type Description
smoothed_data ndarray

Smoothed data after applying multiple Gaussian filters.

Source code in kielmat/utils/preprocessing.py
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
def apply_continuous_wavelet_transform(
    data, scales=10, desired_scale=10, wavelet="gaus2", sampling_frequency=40
):
    """
    Apply continuous wavelet transform to the input signal.

    Args:
        data (numpy.ndarray): Input signal.
        scales (int, optional): Number of scales for the wavelet transform. Default is 10.
        desired_scale (int, optional): Desired scale to use in calculations. Default is 10.
        wavelet (str, optional): Type of wavelet to use. Default is 'gaus2'.
        sampling_frequency (float, optional): Sampling frequency of the signal. Default is 40.

    Returns:
        smoothed_data (numpy.ndarray): Smoothed data after applying multiple Gaussian filters.
    """
    # Error handling for invalid input data
    try:
        if not isinstance(data, np.ndarray):
            raise ValueError("Input data must be a numpy.ndarray")
        if not isinstance(scales, int) or scales <= 0:
            raise ValueError("Scales must be a positive integer")
        if not isinstance(sampling_frequency, (int, float)) or sampling_frequency <= 0:
            raise ValueError("Sampling frequency must be a positive number")

        sampling_period = 1 / sampling_frequency
        coefficients, _ = pywt.cwt(
            data, np.arange(1, scales + 1), wavelet, sampling_period
        )
        wavelet_transform_result = coefficients[desired_scale - 1, :]

        return wavelet_transform_result
    except Exception as e:
        # Handle the exception by printing an error message and returning None.
        print(f"Error in apply_continuous_wavelet_transform: {e}")

        return None

apply_successive_gaussian_filters(data)

Apply successive Gaussian filters to the input data.

Parameters:

Name Type Description Default
data ndarray

Input data.

required

Returns:

Name Type Description
data ndarray

Filtered data.

Source code in kielmat/utils/preprocessing.py
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
def apply_successive_gaussian_filters(data):
    """
    Apply successive Gaussian filters to the input data.

    Args:
        data (numpy.ndarray): Input data.

    Returns:
        data (numpy.ndarray): Filtered data.
    """
    # Error handling for invalid input data
    if not isinstance(data, np.ndarray):
        raise ValueError("Input data must be a NumPy array.")

    if data.size < 1:
        raise ValueError("Input data must not be empty.")

    sigma_params = [2, 2, 3, 2]
    kernel_size_params = [10, 10, 15, 10]
    mode_params = ["reflect", "reflect", "nearest", "reflect"]

    filtered_signal = data

    for sigma, kernel_size, mode in zip(sigma_params, kernel_size_params, mode_params):

        gaussian_radius = (kernel_size - 1) / 2
        filtered_signal = scipy.ndimage.gaussian_filter1d(
            filtered_signal, sigma=sigma, mode=mode, radius=round(gaussian_radius)
        )

    return filtered_signal

calculate_envelope_activity(input_signal, smooth_window=20, threshold_style=1, duration=20)

Calculate envelope-based activity detection using the Hilbert transform.

This function analyzes an input signal input_signal to detect periods of activity based on the signal's envelope. It calculates the analytical signal using the Hilbert transform, smoothes the envelope, and applies an adaptive threshold to identify active regions.

Parameters:

Name Type Description Default
input_signal array_like

The input signal.

required
smooth_window int

Window length for smoothing the envelope (default is 20).

20
threshold_style int

Threshold selection style: 0 for manual, 1 for automatic (default is 1).

1
duration int

Minimum duration of activity to be detected (default is 20).

20

Returns:

Name Type Description
alarm ndarray

Vector indicating active parts of the signal.

env ndarray

Smoothed envelope of the signal.

Source code in kielmat/utils/preprocessing.py
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
def calculate_envelope_activity(
    input_signal, smooth_window=20, threshold_style=1, duration=20
):
    """
    Calculate envelope-based activity detection using the Hilbert transform.

    This function analyzes an input signal `input_signal` to detect periods of activity based on the signal's envelope.
    It calculates the analytical signal using the Hilbert transform, smoothes the envelope, and applies an
    adaptive threshold to identify active regions.

    Parameters:
        input_signal (array_like): The input signal.
        smooth_window (int): Window length for smoothing the envelope (default is 20).
        threshold_style (int): Threshold selection style: 0 for manual, 1 for automatic (default is 1).
        duration (int): Minimum duration of activity to be detected (default is 20).

    Returns:
        alarm (ndarray): Vector indicating active parts of the signal.
        env (ndarray): Smoothed envelope of the signal.
    """
    # Error handling for invalid input data
    if not isinstance(input_signal, np.ndarray):
        raise ValueError("Input signal should be a NumPy array.")

    if not isinstance(smooth_window, (int)) or smooth_window <= 0:
        raise ValueError("The window length must be a positive integer.")

    if not isinstance(threshold_style, (int)) or threshold_style <= 0:
        raise ValueError("The threshold style must be a positive integer.")

    if not isinstance(duration, (int)) or duration <= 0:
        raise ValueError("The duration must be a positive integer.")

    # Calculate the analytical signal and get the envelope
    input_signal = input_signal.flatten()
    # Compute the analytic signal, using the Hilbert transform form scipy.signal.
    analytic = scipy.signal.hilbert(input_signal)
    env = np.abs(analytic)  # Compute the envelope of the analytic signal.

    # Take the moving average of the analytic signal
    env = scipy.signal.convolve(
        env, np.ones(smooth_window) / smooth_window, mode="full"
    )  # Returns the discrete, linear convolution of two one-dimensional sequences.

    env = env - np.mean(env)  # Remove the offset by subtracting the mean of 'env'
    env = env / np.max(env)  # Normalize the 'env' by dividing by its maximum value

    # Threshold the signal
    # if threshold_style == 0:
    #     plt.plot(env)
    #     plt.title("Select a threshold on the graph")
    #     THR_SIG = plt.ginput(1)[0][1]
    #     plt.close()
    # else:
    #     THR_SIG = 4 * np.mean(env)
    THR_SIG = 4 * np.mean(env)

    # Set noise and signal levels
    noise = np.mean(env) / 3  # noise level

    # Signal level: It's used as a reference to distinguish between the background noise and the actual signal activity.
    threshold = np.mean(env)

    # Initialize Buffers
    thres_buf = np.zeros(
        len(env) - duration
    )  # This buffer stores values related to a threshold.
    noise_buf = np.zeros(
        len(env) - duration
    )  # This buffer stores values related to the noise.
    THR_buf = np.zeros(len(env))  # This buffer stores threshold values.
    alarm = np.zeros(len(env))  # This buffer tracks alarm-related information.
    h = 1

    for i in range(len(env) - duration):
        if np.all(env[i : i + duration + 1] > THR_SIG):
            alarm[i] = np.max(
                env
            )  # If the current window of data surpasses the threshold, set an alarm.
            threshold = 0.1 * np.mean(
                env[i : i + duration + 1]
            )  # Set a new threshold based on the mean of the current window.
            h += 1
        else:
            # Update noise
            if np.mean(env[i : i + duration + 1]) < THR_SIG:
                noise = np.mean(
                    env[i : i + duration + 1]
                )  # Update the noise value based on the mean of the current window.
            else:
                if len(noise_buf) > 0:
                    noise = np.mean(
                        noise_buf
                    )  # If available, use the mean of noise buffer to update the noise.
        thres_buf[i] = threshold  # Store the threshold value in the threshold buffer.
        noise_buf[i] = noise  # Store the noise value in the noise buffer.

        # Update threshold
        if h > 1:
            THR_SIG = noise + 0.50 * (
                np.abs(threshold - noise)
            )  # Update the threshold using noise and threshold values.
        THR_buf[i] = (
            THR_SIG  # Store the updated threshold value in the threshold buffer.
        )

    return alarm, env

classify_physical_activity(input_data, time_column_name='timestamp', sedentary_threshold=45, light_threshold=100, moderate_threshold=400, epoch_duration=5)

Classify activity levels based on processed Euclidean Norm Minus One (ENMO) values.

Parameters:

Name Type Description Default
input_data DataFrame

Input data with time index and accelerometer data (N, 3) for x, y, and z axes.

required
time_column_name str

Name of the index column.

'timestamp'
sedentary_threshold float

Threshold for sedentary activity.

45
light_threshold float

Threshold for light activity.

100
moderate_threshold float

Threshold for moderate activity.

400
epoch_duration int

Duration of each epoch in seconds.

5

Returns:

Name Type Description
processed_data DataFrame

Processed data including time, averaged ENMO values base on epoch length, activity levels represented with 0 or 1.

Source code in kielmat/utils/preprocessing.py
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
def classify_physical_activity(
    input_data,
    time_column_name="timestamp",
    sedentary_threshold=45,
    light_threshold=100,
    moderate_threshold=400,
    epoch_duration=5,
):
    """
    Classify activity levels based on processed Euclidean Norm Minus One (ENMO) values.

    Args:
        input_data (DataFrame): Input data with time index and accelerometer data (N, 3) for x, y, and z axes.
        time_column_name (str): Name of the index column.
        sedentary_threshold (float): Threshold for sedentary activity.
        light_threshold (float): Threshold for light activity.
        moderate_threshold (float): Threshold for moderate activity.
        epoch_duration (int): Duration of each epoch in seconds.

    Returns:
        processed_data(DataFrame): Processed data including time, averaged ENMO values base on epoch length, activity levels represented with 0 or 1.
    """
    # Check if input_data is a DataFrame
    if not isinstance(input_data, pd.DataFrame):
        raise ValueError("Input_data must be a pandas DataFrame.")

    # Check if threshold values are valid numeric types
    if not all(
        isinstance(threshold, (int, float))
        for threshold in [sedentary_threshold, light_threshold, moderate_threshold]
    ):
        raise ValueError("Threshold values must be numeric.")

    # Check if epoch_duration is a positive integer
    if not isinstance(epoch_duration, int) or epoch_duration <= 0:
        raise ValueError("Epoch_duration must be a positive integer.")

    # Group data by time in epochs and calculate the mean
    processed_data = input_data.groupby(pd.Grouper(freq=f"{epoch_duration}s")).mean()

    # Classify activity levels based on threshold values
    processed_data["sedentary"] = (processed_data["enmo"] < sedentary_threshold).astype(
        int
    )
    processed_data["light"] = (
        (sedentary_threshold <= processed_data["enmo"])
        & (processed_data["enmo"] < light_threshold)
    ).astype(int)
    processed_data["moderate"] = (
        (light_threshold <= processed_data["enmo"])
        & (processed_data["enmo"] < moderate_threshold)
    ).astype(int)
    processed_data["vigorous"] = (processed_data["enmo"] >= moderate_threshold).astype(
        int
    )

    # Reset the index for the resulting DataFrame
    processed_data.reset_index(inplace=True)

    # Return a DataFrame with the time, averaged ENMO, and classes of sedentary, light, moderate and vigorous shown with 1 or 0.
    return processed_data[
        [time_column_name, "enmo", "sedentary", "light", "moderate", "vigorous"]
    ]

convert_pulse_train_to_array(pulse_train_list)

Convert a List of Pulse Train Dictionaries to a 2D Array.

This function takes a list of pulse train dictionaries and converts it into a 2D array. Each dictionary is expected to have keys 'start' and 'end', and the function creates an array where each row corresponds to a dictionary with the 'start' value in the first column and the 'end' value in the second column.

Parameters:

Name Type Description Default
pulse_train_list list

A list of dictionaries containing pulse train information.

required

Returns:

Name Type Description
array_representation ndarray

A 2D array where each row represents a pulse train with the 'start' value in the first column and the 'end' value in the second column.

Source code in kielmat/utils/preprocessing.py
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
def convert_pulse_train_to_array(pulse_train_list):
    """
    Convert a List of Pulse Train Dictionaries to a 2D Array.

    This function takes a list of pulse train dictionaries and converts it into a 2D array.
    Each dictionary is expected to have keys 'start' and 'end', and the function creates an array
    where each row corresponds to a dictionary with the 'start' value in the first column and the
    'end' value in the second column.

    Args:
        pulse_train_list (list): A list of dictionaries containing pulse train information.

    Returns:
        array_representation(numpy.ndarray): A 2D array where each row represents a pulse train with the 'start' value
                                            in the first column and the 'end' value in the second column.
    """
    # Error handling for invalid input data
    if not isinstance(pulse_train_list, list):
        raise ValueError("Input should be a list of pulse train dictionaries.")

    # Check if the list is empty
    if not pulse_train_list:
        raise ValueError("Input list is empty.")

    # Check that each element in the list is a dictionary with the expected keys
    for pulse_train in pulse_train_list:
        if not isinstance(pulse_train, dict):
            raise ValueError("Each element in the list should be a dictionary.")
        if "start" not in pulse_train or "end" not in pulse_train:
            raise ValueError("Each dictionary should contain 'start' and 'end' keys.")

    # Initialize a 2D array with the same number of rows as pulse train dictionaries and 2 columns.
    array_representation = np.zeros((len(pulse_train_list), 2), dtype=np.uint64)

    # Iterate through the list of pulse train dictionaries.
    for i, pulse_train_dict in enumerate(pulse_train_list):
        array_representation[i, 0] = pulse_train_dict["start"]
        array_representation[i, 1] = pulse_train_dict["end"]

    return array_representation

find_consecutive_groups(input_signal)

Find consecutive groups of non-zero values in an input array.

This function takes an input array input_signal, converts it to a column vector, and identifies consecutive groups of non-zero values. It returns a 2D array where each row represents a group, with the first column containing the start index of the group and the second column containing the end index of the group.

Parameters:

Name Type Description Default
input_signal ndarray

The input array.

required

Returns:

Name Type Description
ind ndarray

A 2D array where each row represents a group of consecutive non-zero values. The first column contains the start index of the group, and the second column contains the end index.

Source code in kielmat/utils/preprocessing.py
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
def find_consecutive_groups(input_signal):
    """
    Find consecutive groups of non-zero values in an input array.

    This function takes an input array `input_signal`, converts it to a column vector, and identifies consecutive groups of
    non-zero values. It returns a 2D array where each row represents a group, with the first column containing
    the start index of the group and the second column containing the end index of the group.

    Parameters:
        input_signal (ndarray): The input array.

    Returns:
        ind (ndarray): A 2D array where each row represents a group of consecutive non-zero values.
            The first column contains the start index of the group, and the second column contains the end index.
    """
    # Error handling for invalid input data
    if not isinstance(input_signal, np.ndarray):
        raise ValueError("Input data must be a NumPy array.")

    if input_signal.size < 1:
        raise ValueError("Input data must not be empty.")

    # Find indices of non-zeros elements
    temp = np.where(input_signal)[0]

    # Find where the difference between indices is greater than 1
    idx = np.where(np.diff(temp) > 1)[0]

    # Initialize the output array
    ind = np.zeros((len(idx) + 1, 2), dtype=int)

    # Set the second column
    ind[:, 1] = temp[np.append(idx, -1)]

    # Set the first column
    ind[:, 0] = temp[np.insert(idx + 1, 0, 0)]

    return ind

find_interval_intersection(set_a, set_b)

Find the Intersection of Two Sets of Intervals.

Given two sets of intervals, this function computes their intersection and returns a new set of intervals representing the overlapping regions.

Parameters:

Name Type Description Default
set_a ndarray

The first set of intervals, where each row represents an interval with two values indicating the start and end points.

required
set_b ndarray

The second set of intervals, with the same structure as set_a.

required

Returns:

Name Type Description
intersection_intervals ndarray

A new set of intervals representing the intersection of intervals from set_a and set_b.

Source code in kielmat/utils/preprocessing.py
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
def find_interval_intersection(set_a, set_b):
    """
    Find the Intersection of Two Sets of Intervals.

    Given two sets of intervals, this function computes their intersection and returns a new set
    of intervals representing the overlapping regions.

    Args:
        set_a (numpy.ndarray): The first set of intervals, where each row represents an interval with two values
            indicating the start and end points.
        set_b (numpy.ndarray): The second set of intervals, with the same structure as `set_a`.

    Returns:
        intersection_intervals (numpy.ndarray): A new set of intervals representing the intersection of intervals from `set_a` and `set_b`.
    """
    # Error handling for invalid input data
    if not isinstance(set_a, np.ndarray) or not isinstance(set_b, np.ndarray):
        raise ValueError("Both input sets should be NumPy arrays.")

    # Check if the input sets have the correct structure (two columns)
    if set_a.shape[1] != 2 or set_b.shape[1] != 2:
        raise ValueError(
            "Input sets should have two columns, indicating start and end points."
        )

    # Get the number of intervals in each set.
    num_intervals_a = set_a.shape[0]
    num_intervals_b = set_b.shape[0]

    # Initialize an empty list to store the intersection intervals.
    intersection_intervals = []

    # If either set of intervals is empty, return an empty array.
    if num_intervals_a == 0 or num_intervals_b == 0:
        return np.array(intersection_intervals)

    # Initialize indices and state variables for set_a and set_b traversal.
    index_a = 0
    index_b = 0
    state = 3

    # Traverse both sets of intervals and compute their intersection.
    while index_a < num_intervals_a and index_b < num_intervals_b:
        if state == 1:
            if set_a[index_a, 1] < set_b[index_b, 0]:
                index_a += 1
                state = 3
            elif set_a[index_a, 1] < set_b[index_b, 1]:
                intersection_intervals.append([set_b[index_b, 0], set_a[index_a, 1]])
                index_a += 1
                state = 2
            else:
                intersection_intervals.append(set_b[index_b, :])
                index_b += 1
        elif state == 2:
            if set_b[index_b, 1] < set_a[index_a, 0]:
                index_b += 1
                state = 3
            elif set_b[index_b, 1] < set_a[index_a, 1]:
                intersection_intervals.append([set_a[index_a, 0], set_b[index_b, 1]])
                index_b += 1
                state = 1
            else:
                intersection_intervals.append(set_a[index_a, :])
                index_a += 1
        elif state == 3:
            if set_a[index_a, 0] < set_b[index_b, 0]:
                state = 1
            else:
                state = 2

    return np.array(intersection_intervals)

find_local_min_max(signal, threshold=None)

Find Local Minima and Maxima in a Given Signal.

This function takes an input signal and identifies the indices of local minima and maxima. Optionally, a threshold can be provided to filter out minima and maxima that do not exceed the threshold.

Parameters:

Name Type Description Default
signal ndarray

The input signal.

required
threshold float or None

Threshold for filtering out minima and maxima below and above this value, respectively.

None

Returns:

Name Type Description
minima_indices ndarray

Indices of local minima in the signal.

maxima_indices ndarray

Indices of local maxima in the signal.

Source code in kielmat/utils/preprocessing.py
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
def find_local_min_max(signal, threshold=None):
    """
    Find Local Minima and Maxima in a Given Signal.

    This function takes an input signal and identifies the indices of local minima and maxima.
    Optionally, a threshold can be provided to filter out minima and maxima that do not exceed the threshold.

    Parameters:
        signal (numpy.ndarray): The input signal.
        threshold (float or None, optional): Threshold for filtering out minima and maxima below and above this value, respectively.

    Returns:
        minima_indices (numpy.ndarray): Indices of local minima in the signal.
        maxima_indices (numpy.ndarray): Indices of local maxima in the signal.
    """
    # Error handling for invalid input data
    if not isinstance(signal, np.ndarray):
        raise ValueError("Input signal must be a NumPy array.")

    if signal.size < 1:
        raise ValueError("Input signal must not be empty.")

    # Find positive peaks in the signal
    maxima_indices, _ = scipy.signal.find_peaks(signal)

    # Find negative peaks in the inverted signal
    minima_indices, _ = scipy.signal.find_peaks(-signal)

    if threshold is not None:
        maxima_indices = maxima_indices[signal[maxima_indices] > threshold] + 1
        minima_indices = minima_indices[signal[minima_indices] < -threshold] + 1

    return minima_indices, maxima_indices

highpass_filter(signal, sampling_frequency=40, method='iir')

Apply a high-pass filter to the input signal using the specified method.

Parameters:

Name Type Description Default
signal ndarray

The input signal to be filtered.

required
sampling_frequency float

The sampling frequency of the input signal.

40
method str

The filtering method to be used.

'iir'

Returns:

Name Type Description
filtered_signal ndarray

The filtered signal.

Source code in kielmat/utils/preprocessing.py
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
def highpass_filter(signal, sampling_frequency=40, method="iir"):
    """
    Apply a high-pass filter to the input signal using the specified method.

    Args:
        signal (np.ndarray): The input signal to be filtered.
        sampling_frequency (float): The sampling frequency of the input signal.
        method (str): The filtering method to be used.

    Returns:
        filtered_signal (np.ndarray): The filtered signal.

    """
    # Error handling for invalid input data
    if (
        not isinstance(signal, np.ndarray)
        or not isinstance(sampling_frequency, (int, float))
        or sampling_frequency <= 0
    ):
        raise ValueError(
            "Invalid input data. The 'signal' must be a NumPy array, and 'sampling_frequency' must be a positive number."
        )

    if not isinstance(method, str):
        raise ValueError("'method' must be a string.")

    method = method.lower()

    if method == "iir":
        filtered_signal = _iir_highpass_filter(signal, sampling_frequency)
    else:
        raise ValueError(f"Unsupported filtering method: {method}")

    return filtered_signal

identify_pulse_trains(signal)

Identify Pulse Trains in a Given Signal.

This function takes an input signal and detects pulse trains within the signal. A pulse train is identified as a sequence of values with small intervals between adjacent values.

Parameters:

Name Type Description Default
signal ndarray

The input signal.

required

Returns:

Name Type Description
pulse_train list

A list of dictionaries, each containing information about a detected pulse train. Each dictionary has the following keys:

start: The index of the first value in the pulse train.

end: The index of the last value in the pulse train.

steps: The number of steps in the pulse train.

Source code in kielmat/utils/preprocessing.py
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
def identify_pulse_trains(signal):
    """
    Identify Pulse Trains in a Given Signal.

    This function takes an input signal and detects pulse trains within the signal.
    A pulse train is identified as a sequence of values with small intervals between adjacent values.

    Args:
        signal (numpy.ndarray): The input signal.

    Returns:
        pulse_train (list): A list of dictionaries, each containing information about a detected pulse train.
            Each dictionary has the following keys:

            `start`: The index of the first value in the pulse train.

            `end`: The index of the last value in the pulse train.

            `steps`: The number of steps in the pulse train.
    """
    # Error handling for invalid input data
    if signal.size < 1:
        raise ValueError("Input signal must not be empty.")

    # Initialize an empty list to store detected pulse trains.
    pulse_trains = []

    # Initialize a flag to track whether we are within a pulse train.
    walking_flag = 0

    # Set an initial threshold value for pulse train detection.
    threshold = 3.5 * 40

    # Initialize a counter for the number of detected pulse trains.
    pulse_count = 0

    # Check if the signal has more than 2 elements.
    if len(signal) > 2:
        for i in range(len(signal) - 1):
            # Check if the difference between adjacent values is less than the threshold.
            if signal[i + 1] - signal[i] < threshold:
                if walking_flag == 0:
                    # If not already in a pulse train, start a new one.
                    pulse_trains.append({"start": signal[i], "steps": 1})
                    pulse_count += 1
                    walking_flag = 1
                else:
                    # If already in a pulse train, update the number of steps and threshold.
                    pulse_trains[pulse_count - 1]["steps"] += 1
                    threshold = (
                        1.5 * 40
                        + (signal[i] - pulse_trains[pulse_count - 1]["start"])
                        / pulse_trains[pulse_count - 1]["steps"]
                    )
            else:
                if walking_flag == 1:
                    # If leaving a pulse train, record its end and reset threshold.
                    pulse_trains[pulse_count - 1]["end"] = signal[i - 1]
                    walking_flag = 0
                    threshold = 3.5 * 40

    if walking_flag == 1:
        if signal[-1] - signal[-2] < threshold:
            # If still in a pulse train at the end, record its end and update steps.
            pulse_trains[-1]["end"] = signal[-1]
            pulse_trains[-1]["steps"] += 1
        else:
            # If leaving a pulse train at the end, record its end.
            pulse_trains[-1]["end"] = signal[-2]

    return pulse_trains

lowpass_filter(signal, method='savgol', order=None, **kwargs)

Apply a low-pass filter to the input signal.

Parameters:

Name Type Description Default
signal ndarray

The input signal to be filtered.

required
method str

The filter method to use ("savgol", "butter", or "fir").

'savgol'
order int

The order of the filter (applicable for "butter" method).

None
**kwargs dict

Additional keyword arguments specific to the Savitzky-Golay filter method or other methods.

{}

Returns:

Name Type Description
filt_signal ndarray

The filtered signal.

Source code in kielmat/utils/preprocessing.py
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
def lowpass_filter(signal, method="savgol", order=None, **kwargs:dict):
    """
    Apply a low-pass filter to the input signal.

    Args:
        signal (numpy.ndarray): The input signal to be filtered.
        method (str): The filter method to use ("savgol", "butter", or "fir").
        order (int): The order of the filter (applicable for "butter" method).
        **kwargs: Additional keyword arguments specific to the Savitzky-Golay filter method or other methods.

    Returns:
        filt_signal (numpy.ndarray): The filtered signal.
    """
    # Error handling for invalid input data
    if not isinstance(signal, np.ndarray):
        raise ValueError("Input data must be a numpy.ndarray")

    if not isinstance(method, str):
        raise ValueError("'method' must be a string.")

    method = method.lower()

    # Define default parameters for Savitzky-Golay filter
    default_savgol_params = {
        "window_length": 21,
        "polynomial_order": 7,
    }

    # Define default parameters for FIR filter
    default_fir_params = {
        "fir_file": mat_filter_coefficients_file,
    }

    if method == "savgol":
        # Update default parameters with any provided kwargs
        savgol_params = {**default_savgol_params, **kwargs}
        window_length = savgol_params.get(
            "window_length", default_savgol_params["window_length"]
        )
        polynomial_order = savgol_params.get(
            "polynomial_order", default_savgol_params["polynomial_order"]
        )

        filt_signal = scipy.signal.savgol_filter(
            signal, window_length, polynomial_order
        )
        return filt_signal

    elif method == "butter":
        # Extract parameters specific to butterworth filter
        cutoff_freq_hz = kwargs.get("cutoff_freq_hz", 5.0)
        sampling_rate_hz = kwargs.get("sampling_rate_hz", 200.0)

        if order is None:
            raise ValueError("For Butterworth filter, 'order' must be specified.")

        # Apply butterworth lowpass filter
        b, a = scipy.signal.butter(
            N=order,
            Wn=cutoff_freq_hz / (sampling_rate_hz / 2),
            btype="low",
            analog=False,
            fs=sampling_rate_hz,
        )
        filt_signal = scipy.signal.filtfilt(b, a, signal)
        return filt_signal

    elif method == "fir":
        # Update default parameters with any provided kwargs
        fir_params = {**default_fir_params, **kwargs}
        fir_file = fir_params.get("fir_file", default_fir_params["fir_file"])

        # Load FIR low-pass filter coefficients from the specified MAT file
        lowpass_coefficients = scipy.io.loadmat(fir_file)
        numerator_coefficient = lowpass_coefficients["Num"][0, :]

        # Define the denominator coefficients as [1.0] to perform FIR filtering
        denominator_coefficient = np.array([1.0])

        # Apply the FIR low-pass filter using filtfilt
        filtered_signal = scipy.signal.filtfilt(
            numerator_coefficient, denominator_coefficient, signal
        )

        return filtered_signal

    else:
        raise ValueError("Invalid filter method specified")

max_peaks_between_zc(input_signal)

Find peaks and their locations from the vector input_signal between zero crossings.

Parameters:

Name Type Description Default
input_signal ndarray

Input column vector.

required

Returns:

Name Type Description
pks ndarray

Signed max/min values between zero crossings.

ipks ndarray

Locations of the peaks in the original vector.

Source code in kielmat/utils/preprocessing.py
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
def max_peaks_between_zc(input_signal):
    """
    Find peaks and their locations from the vector input_signal between zero crossings.

    Args:
        input_signal (numpy.ndarray): Input column vector.

    Returns:
        pks (numpy.ndarray): Signed max/min values between zero crossings.
        ipks (numpy.ndarray): Locations of the peaks in the original vector.
    """
    # Flatten the input vector to ensure it's 1D.
    input_signal = input_signal.flatten()

    # Find the locations of zero crossings in the input vector.
    zero_crossings_locations = (
        np.where(np.abs(np.diff(np.sign(input_signal))) == 2)[0] + 1
    )

    # Calculate the number of peaks.
    number_of_peaks = len(zero_crossings_locations) - 1

    def imax(input_signal):
        return np.argmax(input_signal)

    # Find the indices of the maximum values within each peak region.
    ipk = np.array(
        [
            imax(
                np.abs(
                    input_signal[
                        zero_crossings_locations[i] : zero_crossings_locations[i + 1]
                    ]
                )
            )
            for i in range(number_of_peaks)
        ]
    )
    ipks = zero_crossings_locations[:number_of_peaks] + ipk
    ipks = ipks + 1

    # Retrieve the signed max/min values at the peak locations.
    pks = input_signal[ipks - 1]

    return pks, ipks

moving_var(data, window)

Compute the centered moving variance.

Parameters:

Name Type Description Default
data int)

Data to take the moving variance on window

required
window size(int)

Window size for the moving variance.

required

Returns:

Type Description
ndarray

m_var (numpy.ndarray) : Moving variance

Source code in kielmat/utils/preprocessing.py
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
def moving_var(data, window) -> np.ndarray:
    """
    Compute the centered moving variance.

    Args:
        data (int) : Data to take the moving variance on window
        window size (int) : Window size for the moving variance.

    Returns:
        m_var (numpy.ndarray) : Moving variance
    """

    # Initialize an array to store the moving variance
    m_var = np.zeros(data.shape)

    # Calculate the padding required
    pad = int(np.ceil(window / 2))

    # Define the shape and strides for creating rolling windows
    shape = data.shape[:-1] + (data.shape[-1] - window + 1, window)
    strides = data.strides + (data.strides[-1],)

    # Create rolling windows from the input data
    rw_seq = np.lib.stride_tricks.as_strided(data, shape=shape, strides=strides)

    # Compute the variance along the rolling windows and store it in m_var
    n = rw_seq.shape[0]
    m_var[pad : pad + n] = np.var(rw_seq, axis=-1, ddof=1)

    # Copy the variance values to the padding regions
    m_var[:pad], m_var[pad + n :] = m_var[pad], m_var[-pad - 1]

    return m_var

organize_and_pack_results(walking_periods, peak_steps)

Organize and Pack Walking Results with Associated Peak Steps.

Given lists of walking periods and peak step indices, this function organizes and packs the results into a more structured format. It calculates the number of steps in each walking period, associates peak steps with their corresponding walking periods, and extends the duration of walking periods based on step time. The function also checks for overlapping walking periods and merges them.

Parameters:

Name Type Description Default
walking_periods list

List of tuples representing walking periods, where each tuple contains the start and end indices.

required
peak_steps list

List of peak step indices.

required

Returns:

Name Type Description
organized_results list

A list of dictionaries representing organized walking results, each dictionary contains:

- 'start': Start index of the walking period.

- 'end': End index of the walking period.

- 'steps': Number of steps within the walking period.

- 'mid_swing': List of peak step indices within the walking period.
all_mid_swing list

A list of sorted peak step indices across all walking periods.

Source code in kielmat/utils/preprocessing.py
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
def organize_and_pack_results(walking_periods, peak_steps):
    """Organize and Pack Walking Results with Associated Peak Steps.

    Given lists of walking periods and peak step indices, this function organizes and packs the results
    into a more structured format. It calculates the number of steps in each walking period, associates
    peak steps with their corresponding walking periods, and extends the duration of walking periods based
    on step time. The function also checks for overlapping walking periods and merges them.

    Args:
        walking_periods (list): List of tuples representing walking periods, where each tuple contains the start and end indices.
        peak_steps (list): List of peak step indices.

    Returns:
        organized_results (list): A list of dictionaries representing organized walking results, each dictionary contains:

                - 'start': Start index of the walking period.

                - 'end': End index of the walking period.

                - 'steps': Number of steps within the walking period.

                - 'mid_swing': List of peak step indices within the walking period.

        all_mid_swing (list): A list of sorted peak step indices across all walking periods.
    """
    # Calculate the number of walking periods.
    num_periods = len(walking_periods)

    # Initialize a list of dictionaries to store organized walking results.
    organized_results = [
        {
            "start": walking_periods[i][0],
            "end": walking_periods[i][1],
            "steps": 0,
            "mid_swing": [],
        }
        for i in range(num_periods)
    ]

    # Initialize a list to store all peak step indices.
    all_mid_swing = []

    # Iterate through each walking period.
    for i in range(num_periods):
        # Find peak steps within the current walking period.
        steps_within_period = [
            p
            for p in peak_steps
            if organized_results[i]["start"] <= p <= organized_results[i]["end"]
        ]

        # Calculate the number of steps within the walking period.
        organized_results[i]["steps"] = len(steps_within_period)

        # Store the peak step indices within the walking period.
        organized_results[i]["mid_swing"] = steps_within_period

        # Add peak step indices to the list of all peak step indices.
        all_mid_swing.extend(steps_within_period)

        # Calculate step time based on detected peak steps
        if len(steps_within_period) > 2:
            step_time = sum(
                [
                    steps_within_period[j + 1] - steps_within_period[j]
                    for j in range(len(steps_within_period) - 1)
                ]
            ) / (len(steps_within_period) - 1)
            organized_results[i]["start"] = int(
                organized_results[i]["start"] - 1.5 * step_time / 2
            )
            organized_results[i]["end"] = int(
                organized_results[i]["end"] + 1.5 * step_time / 2
            )

    # Sort all peak step indices.
    all_mid_swing.sort()

    # Check for overlapping walking periods and merge them
    i = 0
    while i < num_periods - 1:
        if organized_results[i]["end"] >= organized_results[i + 1]["start"]:
            organized_results[i]["end"] = organized_results[i + 1]["end"]
            organized_results[i]["steps"] += organized_results[i + 1]["steps"]
            organized_results[i]["mid_swing"].extend(
                organized_results[i + 1]["mid_swing"]
            )
            organized_results.pop(i + 1)
            num_periods -= 1
        else:
            i += 1

    return organized_results, all_mid_swing

process_postural_transitions_stationary_periods(time, accel, gyro, stationary, tilt_angle_deg, sampling_period, sampling_freq_Hz, init_period, local_peaks)

Estimate orientation and analyze postural transitions based on sensor data.

Parameters:

Name Type Description Default
time ndarray

Array of timestamps.

required
accel ndarray

Array of accelerometer data (3D).

required
gyro ndarray

Array of gyroscope data (3D).

required
stationary ndarray

Array indicating stationary periods.

required
tilt_angle_deg ndarray

Array of tilt angle data.

required
sampling_period float

Sampling period in seconds.

required
sampling_freq_Hz float

Sampling frequency in Hz.

required
init_period float

Initialization period in seconds.

required
local_peaks ndarray

Array of indices indicating local peaks.

required

Returns:

Name Type Description
time_pt list

List of peak times.

pt_type list

List of postural transition types.

pt_angle list

List of postural transition angles.

duration list

List of postural transition durations.

flexion_max_vel list

List of maximum flexion velocities.

extension_max_vel list

List of maximum extension velocities.

Source code in kielmat/utils/preprocessing.py
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
def process_postural_transitions_stationary_periods(
    time,
    accel,
    gyro,
    stationary,
    tilt_angle_deg,
    sampling_period,
    sampling_freq_Hz,
    init_period,
    local_peaks,
):
    """
    Estimate orientation and analyze postural transitions based on sensor data.

    Args:
        time (ndarray): Array of timestamps.
        accel (ndarray): Array of accelerometer data (3D).
        gyro (ndarray): Array of gyroscope data (3D).
        stationary (ndarray): Array indicating stationary periods.
        tilt_angle_deg (ndarray): Array of tilt angle data.
        sampling_period (float): Sampling period in seconds.
        sampling_freq_Hz (float): Sampling frequency in Hz.
        init_period (float): Initialization period in seconds.
        local_peaks (ndarray): Array of indices indicating local peaks.

    Returns:
        time_pt (list): List of peak times.
        pt_type (list): List of postural transition types.
        pt_angle (list): List of postural transition angles.
        duration (list): List of postural transition durations.
        flexion_max_vel (list): List of maximum flexion velocities.
        extension_max_vel (list): List of maximum extension velocities.
    """
    # Check if input arrays are empty
    if any(arr.size == 0 for arr in [time, accel, gyro, stationary, tilt_angle_deg]):
        raise ValueError("Input arrays cannot be empty")

    # If there is enough stationary data, perform sensor fusion using accelerometer and gyro data
    # Initialize quaternion array for orientation estimation
    quat = np.zeros((len(time), 4))

    # Initial convergence: Update the quaternion using the mean accelerometer values over a certain period
    # This helps in initializing the orientation for accurate estimation
    index_sel = np.arange(0, np.where(time >= time[0] + init_period)[0][0] + 1)
    mean_accel = np.mean(accel[index_sel], axis=0)
    quat[0] = quaternion.rotm2quat(np.eye(3) + quaternion.axang2rotm(mean_accel))

    # Update the quaternion for all data points
    for t in range(1, len(time)):
        # Calculate the rotation matrix from gyroscope data
        dt = time[t] - time[t - 1]
        ang_velocity = gyro[t] * dt
        delta_rot = quaternion.axang2rotm(ang_velocity)

        # Update the quaternion based on the rotation matrix
        quat[t] = quaternion.quatmultiply(quat[t - 1], quaternion.rotm2quat(delta_rot))

        # Normalize the quaternion to avoid drift
        quat[t] = quaternion.quatnormalize(quat[t])

    # Analyze gyro data to detect peak velocities and directional changes
    # Zero-crossing method is used to define the beginning and the end of a PT in the gyroscope signal
    iZeroCr = np.where((gyro[:, 1][:-1] * gyro[:, 1][1:]) < 0)[0]

    # Calculate the difference between consecutive values
    gyrY_diff = np.diff(gyro[:, 1])

    # Beginning of a PT was defined as the first zero crossing point of themedio-lateral angular
    # velocity (gyro[:,1]) on the left side of the PT event, with negative slope.
    # Initialize left side indices with ones
    ls = np.ones_like(local_peaks)

    # Initialize right side indices with length of gyro data
    # rs = len(gyro[:,1]) * np.ones_like(local_peaks)
    rs = np.full_like(local_peaks, len(gyro[:, 1]))
    for i in range(len(local_peaks)):
        # Get the index of the current local peak
        pt = local_peaks[i]

        # Calculate distances to all zero-crossing points relative to the peak
        dist2peak = iZeroCr - pt

        # Extract distances to zero-crossing points on the left side of the peak
        dist2peak_ls = dist2peak[dist2peak < 0]

        # Extract distances to zero-crossing points on the right side of the peak
        dist2peak_rs = dist2peak[dist2peak > 0]

        # Iterate over distances to zero-crossing points on the left side of the peak (in reverse order)
        for j in range(len(dist2peak_ls) - 1, -1, -1):
            # Check if slope is down and the left side not too close to the peak (more than 200ms)
            if gyrY_diff[pt + dist2peak_ls[j]] < 0 and -dist2peak_ls[j] > 25:
                # Store the index of the left side
                ls[i] = pt + dist2peak_ls[j]
                break

    # Further analysis to distinguish between different types of postural transitions (sit-to-stand or stand-to-sit)
    # Rotate body accelerations to Earth frame
    acc = quaternion.rotm2quat(
        np.column_stack((accel[:, 0], accel[:, 1], accel[:, 2])), quat
    )

    # Remove gravity from measurements
    acc -= np.array([[0, 0, 1]] * len(time))

    # Convert acceletion data to m/s^2
    acc *= 9.81

    # Calculate velocities
    vel = np.zeros_like(acc)

    # Iterate over time steps
    for t in range(1, len(vel)):
        # Integrate acceleration to calculate velocity
        vel[t, :] = vel[t - 1, :] + acc[t, :] * sampling_period
        if stationary[t] == 1:
            # Force zero velocity when stationary
            vel[t, :] = [0, 0, 0]

    # Compute and remove integral drift
    velDrift = np.zeros_like(vel)

    # Indices where stationary changes to non-stationary
    activeStart = np.where(np.diff(stationary) == -1)[0]

    # Indices where non-stationary changes to stationary
    activeEnd = np.where(np.diff(stationary) == 1)[0]
    if activeStart[0] > activeEnd[0]:
        # Ensure start from index 0 if starts non-stationary
        activeStart = np.insert(activeStart, 0, 0)

    if activeStart[-1] > activeEnd[-1]:
        # Ensure last segment ends properly
        activeEnd = np.append(activeEnd, len(stationary))
    for i in range(len(activeEnd)):
        # Calculate drift rate
        driftRate = vel[activeEnd[i] - 1] / (activeEnd[i] - activeStart[i])

        # Enumerate time steps within the segment
        enum = np.arange(1, activeEnd[i] - activeStart[i] + 1)

        # Calculate drift for each time step
        drift = np.column_stack(
            (enum * driftRate[0], enum * driftRate[1], enum * driftRate[2])
        )

        # Store the drift for this segment
        velDrift[activeStart[i] : activeEnd[i], :] = drift

    # Remove integral drift from velocity
    vel -= velDrift

    # Compute translational position
    pos = np.zeros_like(vel)

    # Iterate over time steps
    for t in range(1, len(pos)):
        # Integrate velocity to yield position
        pos[t, :] = pos[t - 1, :] + vel[t, :] * sampling_period

    # Estimate vertical displacement and classify as actual PTs or Attempts
    # Calculate vertical displacement
    disp_z = pos[rs, 2] - pos[ls, 2]

    # Initialize flag for actual PTs
    pt_actual_flag = np.zeros_like(local_peaks)

    for i in range(len(disp_z)):
        # Displacement greater than 10cm and less than 1m
        if 0.1 < abs(disp_z[i]) < 1:
            # Flag as actual PT if displacement meets criteria
            pt_actual_flag[i] = 1

    # Initialize list for PT types
    pt_type = []

    # Distinguish between different types of postural transitions
    for i in range(len(local_peaks)):
        if pt_actual_flag[i] == 1:
            if disp_z[i] == 0:
                pt_type.append("NA")
            elif disp_z[i] > 0:
                pt_type.append("sit to stand")
            else:
                pt_type.append("stand to sit")
        else:
            pt_type.append("NA")

    # Calculate maximum flexion velocity and maximum extension velocity
    flexion_max_vel = np.zeros_like(local_peaks)
    extension_max_vel = np.zeros_like(local_peaks)
    for i in range(len(local_peaks)):
        flexion_max_vel[i] = max(abs(gyro[:, 1][ls[i] : local_peaks[i]]))
        extension_max_vel[i] = max(abs(gyro[:, 1][local_peaks[i] : rs[i]]))

    # Calculate PT angle
    pt_angle = np.abs(tilt_angle_deg[local_peaks] - tilt_angle_deg[ls])
    if ls[0] == 0:
        # Adjust angle for the first PT if necessary
        pt_angle[0] = np.abs(tilt_angle_deg[local_peaks[0]] - tilt_angle_deg[rs[0]])

    # Calculate duration of each PT
    duration = (rs - ls) / sampling_freq_Hz

    # Convert peak times to integers
    time_pt = time[local_peaks]

    # Initialize PTs list
    # i.e., the participant was considered to perform a complete standing up or sitting down movement
    PTs = [
        [
            "Time[s]",
            "Type",
            "Angle[°]",
            "Duration[s]",
            "Max flexion velocity[°/s]",
            "Max extension velocity[°/s]",
            "Vertical displacement[m]",
        ]
    ]

    # Initialize Attempts list
    # i.e., the participant was considered not to perform a complete PT, e.g., forward and backwards body motion
    Attempts = [
        [
            "Time[s]",
            "Type",
            "Angle[°]",
            "Duration[s]",
            "Max flexion velocity[°/s]",
            "Max extension velocity[°/s]",
            "Vertical displacement[m]",
        ]
    ]

    # Iterate over detected peaks
    for i in range(len(local_peaks)):
        if pt_actual_flag[i] == 1:
            PTs.append(
                [
                    time_pt[i],
                    pt_type[i],
                    pt_angle[i],
                    duration[i],
                    flexion_max_vel[i],
                    extension_max_vel[i],
                    disp_z[i],
                ]
            )  # Append PT details to PTs list
        else:
            Attempts.append(
                [
                    time_pt[i],
                    pt_type[i],
                    pt_angle[i],
                    duration[i],
                    flexion_max_vel[i],
                    extension_max_vel[i],
                    disp_z[i],
                ]
            )  # Append PT details to Attempts list

    # Extract postural transition information from PTs
    time_pt = [pt[0] for pt in PTs[1:]]
    pt_type = [pt[1] for pt in PTs[1:]]
    pt_angle = [pt[2] for pt in PTs[1:]]
    duration = [pt[3] for pt in PTs[1:]]
    flexion_max_vel = [pt[4] for pt in PTs[1:]]
    extension_max_vel = [pt[5] for pt in PTs[1:]]

    # Return the necessary outputs
    return time_pt, pt_type, pt_angle, duration, flexion_max_vel, extension_max_vel

resample_interpolate(input_signal, initial_sampling_frequency, target_sampling_frequency)

Resample and interpolate a signal to a new sampling frequency.

This function takes a signal input_signal sampled at an initial sampling frequency initial_sampling_frequency and resamples it to a target sampling frequency target_sampling_frequency using linear interpolation.

Parameters:

Name Type Description Default
input_signal array_like

The input signal.

required
initial_sampling_frequency float

The initial sampling frequency of the input signal. Default is 100.

required
target_sampling_frequency float

The target sampling frequency for the output signal. Default is 40.

required

Returns:

Name Type Description
resampled_signal array_like

The resampled and interpolated signal.

Source code in kielmat/utils/preprocessing.py
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
def resample_interpolate(
    input_signal, initial_sampling_frequency: float, target_sampling_frequency: float
):
    """
    Resample and interpolate a signal to a new sampling frequency.

    This function takes a signal `input_signal` sampled at an initial sampling frequency `initial_sampling_frequency`
    and resamples it to a target sampling frequency `target_sampling_frequency` using linear interpolation.

    Args:
        input_signal (array_like): The input signal.
        initial_sampling_frequency (float, optional): The initial sampling frequency of the input signal. Default is 100.
        target_sampling_frequency (float, optional): The target sampling frequency for the output signal. Default is 40.

    Returns:
        resampled_signal (array_like): The resampled and interpolated signal.
    """
    # Error handling for invalid input data
    if not isinstance(input_signal, np.ndarray):
        raise ValueError("Input signal should be a NumPy array.")

    if (
        not isinstance(initial_sampling_frequency, (int, float))
        or initial_sampling_frequency <= 0
    ):
        raise ValueError("The initial sampling frequency must be a positive float.")

    if (
        not isinstance(target_sampling_frequency, (int, float))
        or target_sampling_frequency <= 0
    ):
        raise ValueError("The target sampling frequency must be a positive float.")

    # Calculate the length of the input signal.
    recording_time = len(input_signal)

    # Create an array representing the time indices of the input signal.
    x = np.arange(1, recording_time + 1)

    # Create an array representing the time indices of the resampled signal.
    xq = np.arange(
        1, recording_time + 1, initial_sampling_frequency / target_sampling_frequency
    )

    # Create an interpolation function using linear interpolation and apply it to the data.
    interpolator = scipy.interpolate.interp1d(
        x, input_signal, kind="linear", axis=0, fill_value="extrapolate"
    )

    # Resample and interpolate the input signal to the desired target sampling rate.
    resampled_signal = interpolator(xq)

    return resampled_signal

signal_decomposition_algorithm(vertical_accelerarion_data, initial_sampling_frequency=100)

Perform the Signal Decomposition algorithm on accelerometer data.

Parameters:

Name Type Description Default
vertical_accelerarion_data ndarray

Vertical Acceleration data.

required
initial_sampling_frequency float

Sampling frequency of the data.

100

Returns:

Name Type Description
IC_seconds ndarray

Detected IC (Initial Contact) timings in seconds.

FC_seconds ndarray

Detected FC (Foot-off Contact) timings in seconds.

Source code in kielmat/utils/preprocessing.py
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
def signal_decomposition_algorithm(
    vertical_accelerarion_data, initial_sampling_frequency=100
):
    """
    Perform the Signal Decomposition algorithm on accelerometer data.

    Args:
        vertical_accelerarion_data (numpy.ndarray): Vertical Acceleration data.
        initial_sampling_frequency (float): Sampling frequency of the data.

    Returns:
        IC_seconds (numpy.ndarray): Detected IC (Initial Contact) timings in seconds.
        FC_seconds (numpy.ndarray): Detected FC (Foot-off Contact) timings in seconds.
    """
    # Error handling for invalid input data
    if not isinstance(vertical_accelerarion_data, np.ndarray):
        raise ValueError("vertical_acceleration_data must be a numpy.ndarray")

    if len(vertical_accelerarion_data.shape) < 1:
        raise ValueError("vertical_acceleration_data must have at least one dimension")

    if (
        not isinstance(initial_sampling_frequency, (int, float))
        or initial_sampling_frequency <= 0
    ):
        raise ValueError("The initial sampling frequency must be a positive float.")

    # Define the target sampling frequency for processing.
    target_sampling_frequency = 40

    # Resample and interpolate the vertical acceleration data to the target sampling frequency.
    smoothed_vertical_accelerarion_data = resample_interpolate(
        vertical_accelerarion_data,
        initial_sampling_frequency,
        target_sampling_frequency,
    )

    # Load filtering coefficients from a .mat file
    filtering_file = scipy.io.loadmat(mat_filter_coefficients_file)
    num = filtering_file["Num"][0, :]
    width_of_pad = 10000 * len(num)
    smoothed_vertical_accelerarion_data_padded = np.pad(
        smoothed_vertical_accelerarion_data, width_of_pad, mode="wrap"
    )

    # Remove 40Hz drift from the filtered data
    drift_removed_acceleration = highpass_filter(
        signal=smoothed_vertical_accelerarion_data_padded,
        sampling_frequency=target_sampling_frequency,
        method="iir",
    )

    # Filter data using the fir low-pass filter
    detrended_vertical_acceleration_signal = lowpass_filter(
        drift_removed_acceleration, method="fir"
    )

    # Remove the padding from the detrended signal
    detrended_vertical_acceleration_signal_lpf_rmzp = (
        detrended_vertical_acceleration_signal[
            width_of_pad
            - 1 : len(detrended_vertical_acceleration_signal)
            - width_of_pad
        ]
    )

    # Integrate the detrended acceleration signal
    det_ver_acc_sig_LPInt = (
        scipy.integrate.cumulative_trapezoid(
            detrended_vertical_acceleration_signal_lpf_rmzp, initial="0"
        )
        / target_sampling_frequency
    )

    # Perform the continuous wavelet transform on the filtered acceleration data
    smoothed_wavelet_result = apply_continuous_wavelet_transform(
        det_ver_acc_sig_LPInt,
        scales=9,
        desired_scale=9,
        wavelet="gaus2",
        sampling_frequency=target_sampling_frequency,
    )

    # Center the wavelet result around zero
    smoothed_wavelet_result = smoothed_wavelet_result - np.mean(smoothed_wavelet_result)
    smoothed_wavelet_result = np.array(smoothed_wavelet_result)

    # Apply max_peaks_between_zc funtion to find peaks and their locations.
    pks1, ipks1 = max_peaks_between_zc(smoothed_wavelet_result.T)

    # Calculate indx1 (logical indices of negative elements)
    indx1 = pks1 < 0

    # Extract IC (indices of negative peaks)
    indices_of_negative_peaks = ipks1[indx1]

    # Convert IC to seconds
    IC_seconds = indices_of_negative_peaks / target_sampling_frequency

    # Apply continuous wavelet transform
    accVLPIntCwt2 = apply_continuous_wavelet_transform(
        smoothed_wavelet_result,
        scales=9,
        desired_scale=9,
        wavelet="gaus2",
        sampling_frequency=target_sampling_frequency,
    )

    # Center the wavelet result around zero
    accVLPIntCwt2 = accVLPIntCwt2 - np.mean(accVLPIntCwt2)
    accVLPIntCwt2 = np.array(accVLPIntCwt2)

    # Apply max_peaks_between_zc funtion to find peaks and their locations.
    pks2, ipks2 = max_peaks_between_zc(accVLPIntCwt2)

    # Calculate indx1 (logical indices of negative elements)
    indx2 = pks2 > 0

    # Extract IC (indices of negative peaks)
    final_contact = ipks2[indx2]

    # Extract Foot-off Contact (FC) timings in seconds
    FC_seconds = final_contact / target_sampling_frequency

    return IC_seconds, FC_seconds

tilt_angle_estimation(data, sampling_frequency_hz)

Estimate tilt angle using simple method with gyro data.

Parameters:

Name Type Description Default
data (ndarray, DataFrame)

Array or DataFrame containing gyro data.

required
sampling_frequency_hz (float, int)

Sampling frequency.

required

Returns:

Name Type Description
tilt ndarray

Tilt angle estimate (deg).

Source code in kielmat/utils/preprocessing.py
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
def tilt_angle_estimation(data, sampling_frequency_hz):
    """
    Estimate tilt angle using simple method with gyro data.

    Args:
        data (ndarray, DataFrame): Array or DataFrame containing gyro data.
        sampling_frequency_hz (float, int): Sampling frequency.

    Returns:
        tilt (ndarray): Tilt angle estimate (deg).
    """
    # Error handling for invalid input data
    if isinstance(data, pd.DataFrame):
        data = data.to_numpy()

    # Check if data is a numpy array
    if not isinstance(data, np.ndarray):
        raise TypeError("Input data must be a numpy array or pandas DataFrame")

    # Integrate gyro data over time to estimate tilt
    tilt_angle = np.cumsum(data) / sampling_frequency_hz

    return tilt_angle

wavelet_decomposition(data, level, wavetype)

Denoise a signal using wavelet decomposition and reconstruction.

Parameters:

Name Type Description Default
data ndarray

Input signal to denoise.

required
level int

Order of wavelet decomposition.

required
wavetype str

Wavelet type to use.

required

Returns:

Name Type Description
denoised_signal ndarray

Denoised signal.

Source code in kielmat/utils/preprocessing.py
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
def wavelet_decomposition(data, level, wavetype):
    """
    Denoise a signal using wavelet decomposition and reconstruction.

    Args:
        data (ndarray): Input signal to denoise.
        level (int): Order of wavelet decomposition.
        wavetype (str): Wavelet type to use.

    Returns:
        denoised_signal (ndarray): Denoised signal.
    """
    # Perform wavelet decomposition
    coeffs = pywt.wavedec(data, wavetype, mode="constant", level=level)

    # Zero out wavelet coefficients beyond specified order
    for i in range(1, len(coeffs)):
        if i != 0:  # Keep the first set of coefficients
            coeffs[i][:] = 0

    # Reconstruct signal from coefficients
    denoised_signal = pywt.waverec(coeffs, wavetype, mode="constant")

    return denoised_signal